Schwann cells use a novel collagen-dependent mechanism for fibronectin fibril assembly.
نویسندگان
چکیده
Cultured rat Schwann cells were stimulated to deposit fibrillar extracellular matrix by treatment with ascorbic acid in the absence of nerve cells. Immunofluoresence staining of the matrix showed that it contains collagens types I and IV, fibronectin and perlecan but not laminin. Collagen type IV, fibronectin and perlecan co-distributed completely in the matrix fibrils, whereas collagen type I was present in only a subset of these fibrils. Time course studies indicated that collagen type I fibrils appear at late stages of matrix formation. Digestion of Schwann cell extracellular matrix with collagenase effectively disrupted most of the matrix including fibronectin fibrils. This was in contrast with fibroblasts, where collagenase treatment removed collagen with no visible effect on fibronectin fibrils. alpha5 integrin was expressed on the cell surface of Schwann cells and partially codistributed with fibronectin-containing fibrils. This suggests that the inability of Schwann cells to deposit fibronectin-containing matrix through a conventional, collagen-independent mechanism was not due to the lack of fibronectin-binding integrins on their cell surface. Polyclonal anti-fibronectin antibodies inhibited the deposition of fibronectin into the matrix fibrils, whereas collagen type IV fibrils were generally unaffected. Growth of Schwann cells on collagen type IV-coated substrate in the absence of ascorbate induced deposition of fine fibronectin fibrils. These results suggest that Schwann cells use an apparently novel, collagen type IV-dependent mechanism for the deposition of fibronectin into their extracellular matrix.
منابع مشابه
Regional Fibronectin and Collagen Fibril Co-Assembly Directs Cell Proliferation and Microtissue Morphology
The extracellular matrix protein, fibronectin stimulates cells to self-assemble into three-dimensional multicellular structures by a mechanism that requires the cell-dependent conversion of soluble fibronectin molecules into insoluble fibrils. Fibronectin also binds to collagen type I and mediates the co-assembly of collagen fibrils into the extracellular matrix. Here, the role of collagen-fibr...
متن کاملاهمیت فیبرونکتین در تکوین، ترمیم و درمان: مقاله مروری
Fibronectin (FN) is one of the essential component of the extra cellular matrix and their important role is as regulator of cellular activities and also fibronectin is an important scaffold for maintaining tissue. Fibronectin conformational changes expose additional binding sites that participate in fibril formation and in conversion of fibrils into a stabilized, insoluble form. In fact fibrone...
متن کاملFibronectin matrix polymerization increases tensile strength of model tissue.
The composition and organization of the extracellular matrix (ECM) contribute to the mechanical properties of tissues. The polymerization of fibronectin into the ECM increases actin organization and regulates the composition of the ECM. In this study, we examined the ability of cell-dependent fibronectin matrix polymerization to affect the tensile properties of an established tissue model. Our ...
متن کاملEx Vivo Expansion of Umbilical Cord Blood Hematopoietic Stem Cells on Collagen- Fibronectin Coated Electrospun Nano Scaffold
Background and Objective: Umbilical Cord blood (UCB) hematopoietic stem cell (HSC) transplantation is a therapeutic approach for the treatment of malignant and non-malignant hematologic disorders due to ease of collection, lack of risk for donors and lower levels of infection. Moreover, it is considered a good alternative for bone marrow HSC transplantation. The main limitation of their use is ...
متن کاملStimulatory effects of a three-dimensional microenvironment on cell-mediated fibronectin fibrillogenesis.
The assembly of fibronectin into a fibrillar matrix is a regulated step-wise process that involves binding to integrin receptors and interactions between fibronectin molecules. This process has been studied extensively using cells in two-dimensional (2D) monolayer culture. In most situations in vivo, however, matrix assembly occurs within existing three-dimensional (3D) extracellular matrix net...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 111 ( Pt 18) شماره
صفحات -
تاریخ انتشار 1998